MD SIMULATIONS OF FRICTION AND WEAR OF FUEL SURROGATES

J.A. Harrisona, J.D. Schallb, S. Maskeya, B.H. Morrowa

a corresponding author email: jah@usna.edu

a United States Naval Academy, Chemistry Department, 572 Holloway Road, Annapolis, MD, 21402, USA
b Oakland University, Mechanical Engineering Department Rochester, MI, 48309, USA

KEYWORDS

Fluid lubrication; Nanotribology; Friction; Wear

Fig.1 This is a snapshot of a molecular dynamics simulation system. In this system, a 50:50 mixture of toluene (blue molecules) and butylcyclohexane (red molecules) are confined between two ultrananocrystalline, UNCD, coatings (gray spheres). Hydrogen atoms on the confined fuel molecules are not shown for clarity. The outer red and blue UNCD layers are thermostated and held rigid, respectively. The distance between the rigid layers is changed to control the load and the upper surface is slid to the right to simulate sliding.

Your abstract should be submitted \textit{via the website}, http://leeds-lyon2019.sciencesconf.org/

ACKNOWLEDGMENTS

This work was partially supported by the Research Office at the United States Naval Academy and the Office of Naval Research.